Big Data Mining

What ? Why ? How ? Where ? Who ?

Prof. Dr. Bart De Moor March 2018

The Fourth Paradigm

	Paradigm	Time Ago	Method		
	First	A millenium	Empirical		
	Second	A few centuries	Theoretical		
	Third	A few decades	Computational		
	Fourth	Today	Data-driven		
l ha l nee	From ive a hypothesis d data to check it	Evolution	To I have data V Which hypotheses can I chec		
		🗘 Data first!			

Data

Big Data Mining

What ? Why ? How ? Where ? Who ?

Prof. Dr. Bart De Moor March 2018

Main tasks

Main tasks

Objectives - ICT

Communication networks

Home automation

Facial recognition

Digital signing

Data center optimization

Objectives - Finance

Fraud detection

Credit worthiness

Risk assessment

Portfolio management

Enter symbol	(company Add	Change View *	\$8607.60	\$-23.70 -0.27%	\$-1042.90	Chert •
Symbol	Lasta Today	/ 16 Time/Vol	Total Value	Today / %	Total / %	Otart
* HRP	7.01 000 N	4.02pm 5.17M	\$490.70	0.00	\$-295.40 -37.58%	m
* SLE	14.66	-0.26 4.01pm -1.74% 7.25M	\$293.20	-6.20 -1.74%	\$-49.40 -14.42%	
* NWS	19.41	4.02pm 2.91M	\$0.00			
* MO	20.43 1.5m	4.01pm 17.93M	\$204.30	3.10 1.54%	\$-601.70 -74.65%	
* HRB	22.55	4.06 4.04pm 1.83% 1.73M	\$451.00	-7.00 -1.53%		Andar
* CAG	23.51	-0.43 4.02pm -1.80% 4.71M	\$235.10	-4.30 -1.80%	\$18.70 8.64%	
* FRE	27.09 1 22%	4.05pm 9.47M	\$270.90	3.20 1.20%	\$-331.60 -55.04%	
* HAL	45.23 0.31 0.00N	4.01pm 11.44M	\$904.60	6.20 0.09%	\$235.20 35.14%	
* HUM	47.77	0.37 4.01pm 0.77% 2.15M	\$955.40	-7.40 -0.77%		
* DGX	49.79	4.02pm -1.09% 787.48K	\$995.80	-14.00 -1.39%	\$-205.60 -17.18%	
* K	52.40	-0.03 -0.02pm -0.06% 2.01M	\$524.00	-0.30	\$80.80 18.23%	_

Just-in-time production

Objectives - Education

Scientometrics

Detecting plagiarism

Teacher performance

Grading

Student performance

Objectives – Smart Cities

Predictive maintenance

Smart lighting

Flood prediction

Traffic management

Electricity Demand

Objectives – Health

Diagnostics

Genome sequencing

Tumour detection

Medical fraud detection

Disease spreading

Big Data Mining

What ? Why ? How ? Where ? Who ?

Prof. Dr. Bart De Moor March 2018

Deep Learning & Neural Networks

- Neural networks.
- New algorithms.
- Multiple layers on top of each other.
- Each layer learns a more complex representation.
- Learn feature hierarchies.

Decision trees

Decision nodes are trained according to a labeled set of data points. A new instance is given as an input and run through the tree, which then produces the most likely output.

Regularized Regression

Fitting a regression function on a data set can result in overfitting: the regression fits to the data, but not to the general trend. The regression is thus not generalizable! A solution is to punish the learner for creating a model with high complexity.

Support Vector Machine

First transform the problem to a high-dimensional form, where the solution is easily found, through the so-called 'kernel trick'. Then, transform the decision boundary back to the original form.

Spectral clustering

Manifold learning

A lot of datasets live on a low dimensional manifold.

Images of a rotating teapot lie on a circular manifold **Goal**: Find a lowdimensional basis for describing the highdimensional data

Component analysis

The data dimensionality is reduced by dividing the data set into smaller, relevant components. This can be done by maximizing the variance (principal component analysis), or by finding independent sources of data (independent component analysis).

Ensemble methods

Several machine learning algorithms are implemented in parallel to each other. A decision on the outcome is then made, based on some decision rule (e.g., majority voting).

Model Predictive control (MPC)

Control method for handling input and state constraints within an optimal control setting.

Principle of predictive control

$$\begin{array}{|c|c|c|c|c|}
& \min_{u(k),\dots,u(k+N_{\rm c}-1)} \sum_{i=1}^{N_{\rm p}} (y_{\rm ref} - y(k+i))^2 \\
& \text{subject to} \\
& \bullet \text{ model of the process} \\
& \bullet \text{ input constraints} \\
& \bullet \text{ output / state constraints}
\end{array}$$

Why MPC ?

- It handles multivariable interactions
- It handles input and state constraints

 It can push the plants to their limits of performance.

Data Assimilation

Data assimilation is the common name given to several numerical techniques that combine the outputs of a numerical model with observational data in order to improve the quality of the model predictions.

Some data assimilation techniques: 3DVAR, 4DVAR, Ensemble Kalman Filter (EnKF) and its variants, Optimal Interpolation (OI), particle filters, etc.

From matrices to tensors

- Exciting new possibilities in tensor framework
- Shift of paradigm

Big Data Mining

What ? Why ? How ? Where ? Who ?

Prof. Dr. Bart De Moor March 2018

STADIUS - SPIN-OFFS "Going beyond research" www.esat.kuleuven.be/stadius/spinoffs.php

Tsunami of medical data

1 slice mouse

brain MSI at

10 µm

resolution

81 GigaByte

sequencing all newborns by 2020 (125k births / year)

125 PetaByte / year

index of 20 million **Biomedical** PubMed records

23 GigaByte

1 CD-ROM 750 MegaByte

1 small animal image

GigaByte

raw NGS data of 1 full genome

1 TeraByte

PACS UZ Leuven

1,6 PetaByte

Genomics core HiSeq 2000 full speed exome sequencing

1 TeraByte / week

Solid tradition of working with doctors

Dentistry

Neurology

Forensics

Human

Genetics

Neonatology

Radiotherapy

Orthopaedics

Gynaecology

Utrecht

academisch ziekenhuis Maastricht

Pneumology

Rehabilitation

Oncology

Genomic markers for Leukemia

Genomic Data Fusion

MMP3[MMP1

ENSG00000149968

Endeavour: Aerts et al., Nature Biotechnology, 2006

NeoGuard : decision support

Brain injury estimate

- Detection of neonatal epileptic seizures •
- Seizures localization •
- Inter-burst intervals •

Incorporated expertise

Knowledge of neurophysiologists are • incorporated into algorithms

Monitoring •

- evolution rate of the background EEG •
- Maturity in premature •

Outcome prediction

- Good •
- Poor

PART A

Smart Cities – Water monitoring

Implementation of a Nonlinear Model Predictive controller (NMPC) for the Demer

This project focuses on the development and implementation of an advanced control strategy for avoiding future floodings of the Demer river in Belgium.

Upstream part of the Demer that is modelled and controlled in the preliminary study done by KU Leuven/ESAT/Stadius

Model Based Predictive Control for Flood Regulation: Demer

Smart Cities – Air quality

Data assimilation in the Air-quality model Aurora

The objective of this research was to improve the concentration estimates of the air-quality model Aurora by using data assimilation techniques (e.g., Optimal Interpolation (OI), Deterministic Ensemble Kalman Filter (DEnKF, etc.)

O₃ air-quality stations

Assimilation stations
 Validation stations

This study was carried out within the framework of the IWT project CLIMAQS, "Climate and Air Quality Modeling for Policy Support".

Average of the O₃ concentration over the validation stations

Starting date: May 28th, 2005 at midnight

Average of the O₃ concentration field over the 14 day period

Data Assimilation

The Deterministic Ensemble Kalman Filter (DEnKF) and the OI technique have been used to improve the PM₁₀ estimates of the Air-quality model AURORA.

Average of the PM_{10} concentration field

Electric load forecasting

How to forecast the demand?

Power grid

⁴² **1 post, 1 week**

250 transformer substations Every 15 min, 5 years

1 post, four seasons

Seasonalities in the load: day, week, year, holidays

6 posts, 1 year Seasonalities, calender holidays !

Electric Market Segmentation

Power load: 245 substations, hourly (5 years) Periodic AR modelling: dim reduction $43.824 \rightarrow 24$ k-means applied after dimensionality reduction

Electric Market Segmentation

Electricity load: 245 substations in Belgian grid (1/2 train, 1/2 validation) $x_i \in \mathbb{R}^{43.824}$: spectral clustering on high dimensional data (5 years)

- 3 of 7 detected clusters:
- 1: Residential profile: morning and evening peaks
- 2: Business profile: peaked around noon
- 3: Industrial profile: increasing morning, oscillating afternoon and evening

Industry 4.0 – Control

Control of the synthesis section of a Urea plant using MPC control techniques

In this project, Model Predictive Control (MPC) strategies were used for stabilizing and maximizing the throughput of the synthesis section of a urea plant, while satisfying all the process constraints.

🗘 IPCOS

Protomation

- **ROI:** IPCOS successfully implemented an MPC control system on the urea plant of Yara Brunsbüttel.
 - IPCOS developed an advanced control solution for urea plants, "urea@Max"

Modelling for control

HELPING MANUFACTURING COMPANIES RAPIDLY IMPROVE PLANT AVAILABILITY AND ASSET EFFECTIVENESS THROUGH BIG DATA IOT DISCOVERY ANALYTICS

Google FOR PROCESS INDUSTRY: BECOME THE NEXT BIG THING IN MANUFACTURING IT

TrendMiner

MEET PETER

Plant Manager and under pressure to maximize **Plant Availability** and **Asset Effectivness**

TrendMiner

MEET ALICE

Process Engineer. Reports to Peter. Needs to optimize the process and minimize the number of **Abnormal Situations**. Currently not satisfied with the level of **Operational Intelligence**.

COMPETITIVE POSITIONING

ERP-based EMI BI/Analytics Adv Analytics MES
 Asset Monitoring EMI-framework APC/RTO/RPO/APS

OUR UNIQUE POSITIONING ALLOWS US TO PARTNER WITH DOMINANT LEGACY PLAYERS

TrendMiner

TECHNOLOGY

PLUG N' PLAY INTEGRATION WITH EXISTING STANDARDS AND SYSTEMS

TRACTION

100% CLOSE RATE SO FAR WITH 19 GLOBAL COMPANIES WITH SHORT SALES CYCLE

64+ customers

100+ manufacturing plants

TrendMiner

Fraud detection on mobile phone network

Average call duration

Call frequency

Big Data Mining

What ? Why ? How ? Where ? Who ?

Prof. Dr. Bart De Moor March 2018